<u>Acceleration</u> is the rate at which <u>velocity</u> changes.
Answer:
t=0.42s
Explanation:
Here you have an inelastic collision. By the conservation of the momentum you have:

m1: mass of the bullet
m2: wooden block mass
v1: velocity of the bullet
v2: velocity of the wooden block
v: velocity of bullet and wooden block after the collision.
By noticing that after the collision, both objects reach the same height from where the wooden block was dropped, you can assume that v is equal to the negative of v2. In other words:

Where you assumed that the negative direction is upward. By replacing and doing v2 the subject of the formula you get:

Now, with this information you can use the equation for the final speed of an accelerated motion and doing t the subject of the formula. IN other words:

hence, the time is t=0.42 s
Answer:
Resultant displacement = 1222.3 m
Angle is 88.3 degree from +X axis.
Explanation:
A = 550 m north
B = 500 m north east
C = 450 m north west
Write in the vector form
A = 550 j
B = 500 (cos 45 i + sin 45 j ) = 353.6 i + 353.6 j
C = 450 ( - cos 45 i + sin 45 j ) = - 318.2 i + 318.2 j
Net displacement is given by
R = (353.6 - 318.2) i + (550 + 353.6 + 318.2) j
R = 35.4 i + 1221.8 j
The magnitude is

The direction is given by
Answer:
The image of everything in front of the mirror is reflected backward, retracing the path it traveled to get there. Nothing is switching left to right or up-down. Instead, it's being inverted front to back. ... That reflection represents the photons of light, bouncing back in the same direction from which they came
Explanation:
The deceleration experienced by the gymnast is the 9 times of the acceleration due to gravity.
Now from Newton`s first law, the net force on gymnast,

Here, W is the weight of the gymnast and a is the acceleration experienced by the gymnast (
acceleration due to gravity)
Therefore,
OR 
Given
and
Substituting these values in above formula and calculate the force exerted by the gymnast,

