Will this one work?...................
Answer:
Explanation:
Displacement is the shortest distance or path between two points.
1) Displacement = √(36² + 45²) = 57.63 miles
2) Displacement = √(100² + 500²) = 509.9 meters
3) Displacement = √(60² + 40²) = 72.11 miles
4) Displacement = √(700² + 500²) = 860.23 miles
5) Displacement = 300 - 300 = 0 miles
6) Displacement = 200 + 100 = 300 miles
7) Displacement = √(650² + 650²) = 919.24 miles
8) Yes, since a distance is moved in a direction
Answer:
v₃ = 5 [m/s]
Explanation:
To solve this problem we must use the definition of linear momentum, which tells us that momentum is equal to the product of mass by Velocity.
P = m*v
where:
P = linear momentum [kg*m/s]
m = mass [kg]
v = velocity [m/s]
We must also clarify that the momentum is preserved i.e. it is equal before the collision and after the collision
Pbeforecollision = Paftercollision
(m₁*v₁) + (m₂*v₂) = (m₁*v₃) + (m₂*v₄)
where:
m₁ = mass of the truck = 3000 [kg]
v₁ = velocity of the truck = 10 [m/s]
m₂ = mass of the car = 1000 [kg]
v₂ = velocity of the car before the collision = 0 (the car is parked)
v₃ = velocity of the truck after the collision [m/s]
v₄ = velocity of the car after the collision = 15 [m/s]
(3000*10) + (1000*0) = (3000*v₃) + (1000*15)
30000 = 3000*v₃ + 15000
3000*v₃ = 30000 - 15000
3000*v₃ = 15000
v₃ = 5 [m/s]
An object is lifted from the surface of a spherical planet to an altitude equal to the radius of the planet.
As a result, the object's <em>mass remains the same</em>, and its <em>weight decreases</em> to 1/4 of whatever it is when the object is on the planet's surface.
The only reasonable choice from this list is choice-A.