Answer: B
Explanation:
X-rays coming into Earth's system from space are absorbed by the atmosphere. Telescopes that processes X-rays, therefore, are placed in orbit above the atmosphere
First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m
Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration
d = <span> 1/2*(625) /(7) = 44.6428 m
The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m
<h3><u>Question: </u></h3>
The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?
a. The mass of the sun
b. The mass of the satellite
c. The mass of the Earth
<h3><u>Answer:</u></h3>
The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.
Option c
<h3><u>
Explanation:
</u></h3>
Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence
.
Gravitational force between Earth and Satellite: 
Centripetal force of Satellite :
Where G = Gravitational Constant
= Mass of Earth
= Mass of satellite
R= Radius of satellite’s circular orbit
V = Speed of satellite
Equating
, we get
Speed of Satellite 
Thus the speed of satellite depends only on the mass of Earth.
You need to find the mass of water in the pool.
Find the volume (10 x 4 x 3) = 120 m3
Water has a density of 1000g/m3,so 120 m3 = 120 x 1000 = 120 000 kg
[delta]H = 4.187 x 120 000 x 3.4 (and the units will be kJ)
You then use the heat of combustion knowing that each mole of methane
releases 891 kJ of heat so if you divide 891 into the previous answer,
you will get the number of moles of CH4
Where's the diagram for question 1?