<u>Answer:</u>
The correct answer option is momentum.
<u>Explanation:</u>
Momentum is the product of an object's mass and velocity.
It is a term which describes the relationship between the mass of an object and the velocity of an object.
Momentum can be represented in the form of an equation as:
P = mv
where P is the momentum,
m is the mass of the object; and v is the velocity of that object.
Answer:
The hunter should aim directly at the perched monkey because the tranquilizer dart will fall away from the line sight at the same rate that the monkey falls from its perch.
Tan theta = 9 / 90 = .1 so theta = 5.71 deg
The time for the monkey to reach the ground is
t = (2 h / g)^1/2 = (18 / 9.8)^1/2 = 1.36 sec
So the horizontal speed of the dart must be at least
Vx = 90 m / 1.36 sec = 66.4 m/s
Vx = V cos theta
V = 66.4 m/s / cos 5.71 = 66.7 m/s
1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].
Answer:
a) 500
b)-500, north west
Explanation:
a) sum of F= F1+F2= 200+300= 500
b) sum of forces=0
so 200+300-500+0