Answer:
In both cases the height is greater than 10.3 m
Explanation:
Pressure is defined by the relationship
P = F / A
in this case the force is the weight of the two gases
F = W = m g
If we use the definition of density
ρ = m / V
V = A h
m = ρ A h
we substitute
P = ρ g h
h = 
For this case the density of the gases is
ρ' = 0.9
h =
we calculate
ρ’= 0.9 \rho_{water}
h = 1 105 / (0.9 1000 9.8)
h = 11.3 m
ρ’= 0.8 \rho_{water}
h = 1 105 / (0.8 1000 9.8
h = 12.8 m
In both cases the height is greater than 10.3 m
Here, we are required to find the relationship between balls of different mass(a measure of weight) and different volumes.
- 1. Ball A will have the greater density
- 2. Ball C and Ball D have the same density.
- 3. Ball Q will have the greater density.
- 4. Ball X and Y will have the same density
The density of an object is given as its mass per unit volume of the object.
Mathematically;.
For Case 1:
- Va = Vb and Ma = 2Mb
- D(b) = (Mb)/(Vb) and D(a) = 2(Mb)/Vb
- Therefore, the density of ball A,
- D(a) = 2D(b).
- Therefore, ball A has the greater density.
For Case 2:
- D(c) = (Mc)/(Vc) and D(d) = (1/3)Md/(1/3)Vd
- Therefore, ball C and D have the same density
For Case 3:
- Vp = 2Vq and Mp = Mq
- D(p) = (Mq)/2(Vq) and D(q) = (Mq)/Vq
- Therefore, the density of ball P is half the density of ball Q
- Therefore, ball Q has the greater density.
For case 4:
Therefore, Ball X and Ball Y have the same density.
Read more:
brainly.com/question/18110802
Answer:
v = 72.54 m/s
Explanation:
We have,
Length of a guitar string is 0.62 m
Frequency of a guitar string is 234 Hz
For guitar string,

The velocity of the wave in the string is given by :

So, the velocity of the waves in the string is 72.54 m/s.
There are no inaccurate items on the list you provided.
And what does 'the following" mean anyway ?
Answer: = 5.75 × 10 -6
Explanation:
= 5.75 × 10-6
(scientific notation)
= 5.75e-6
(scientific e notation)
= 5.75 × 10-6
(engineering notation)
(millionth; prefix micro- (u))
= 0.00000575
(real number)