<u>Answer:</u> The correct answer is option B, C and E.
<u>Explanation:</u>
Centripetal acceleration is defined as the acceleration win which an object moves in a curved path. Formula for this acceleration is given by the equation:

where,
= centripetal acceleration
v = linear speed of the object
r = radius of the curved path
From the given options,
Option A: As, the golf ball is not moving in a curved path. Hence, it is not an example of centripetal acceleration.
Option B: As, a car is moving in a curved path. Hence, it is an example of centripetal acceleration.
Option C: As, a person is moving in a curved path. Hence, it is an example of centripetal acceleration.
Option D: As, a car is not moving in a curved path and is moving in a straight road. Hence, it is not an example of centripetal acceleration. The car is moving with zero acceleration because the direction of the car is not changing.
Option E: As, a bicyclist is moving in a curved path which is around the lake. Hence, it is an example of centripetal acceleration.
mercury??????? my only guess
I think the answer is plasma which is a fourth state of matter.
<h2>
<em><u>⇒</u></em>Answer:</h2>
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)
Step-by-Step Solution:
Solution 35PE
This question discusses about the increased range. So, we shall assume that the angle of jumping will be as the horizontal range is maximum at this angle.
Step 1 of 3<
/p>
The legs have an extension of 0.600 m in the crouch position.
So, m
The person is at rest initially, so the initial velocity will be zero.
The acceleration is m/s2
Acceleration m/s2
Let the final velocity be .
Step 2 of 3<
/p>
Substitute the above given values in the kinematic equation ,
m/s
Therefore, the final velocity or jumping speed is m/s
Explanation:
From the definition of average velocity,
,
and the fact that constant acceleration means

we can solve for the time
:
