Answer:
due to production of heat through friction
Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
T is in seconds (s)
<span>2pi is dimensionless </span>
<span>L is in meters (m) </span>
<span>g is in meters per second squared (m/s^2) </span>
<span>so you can write the equation for the period of the simple pendulum in its units... </span>
<span>s=sqrt(m/(m/s^2)) </span>
<span>simplify</span>
<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>
<span>s=sqrt(s^2) </span>
<span>s=s </span>
<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>
Answer:
4500.5 nutritional calories per gram
Explanation:
Heat lost by the new candy = heat gained by the bomb calorimeter.
Heat gained by the bomb calorimeter = c×ΔT
where c = heat capacity of the calorimeter = 32.20 KJ/K = 32200 J/K
ΔT = change in temperature = 2.69°C = 2.69 K.
Heat gained by the bomb calorimeter = 32200 × 2.69 = 86618 J
Heat lost by the new candy = heat gained by the bomb calorimeter = 86618 J = 20702.2 calories
4.60 g of the new candy lost this amount of calories by undergoing combustion,
The amount of calories per g = 20702.2 calories/4.6 g = 4500.5 calories per gram