The frictional force required is 9000 N
Explanation:
In order to keep the car in the turn in circular motion without sliding, the frictional force must provide the centripetal force necessary for the circular motion.
Therefore, we can write:

where the term on the left is the frictional force while the term on the right is the centripetal force, and where:
m is the mass of the car
v is its speed
r is the radius of the curve
For the car in this turn, we have
m = 1000 kg
v = 30 m/s
(since the diameter is 0.20 km, the radius is half that value)
And substituting, we find

Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
Answer:
Torque; τ = 4.712 × 10^(-3) J
Magnetic moment; M = 0.0248 J/T
Explanation:
Torque is gotten from the formula;
τ = BIA
Where;
B is magnetic field
I is current
A is area
We are given;
B = 0.19T
I = 6.2A
Rectangle dimensions = 5cm by 8cm = 0.05m by 0.08m
Thus;
Area; A = 0.05m × 0.08m = 0.004 m²
Thus;
τ = 0.19 × 6.2 × 0.004
τ = 4.712 × 10^(-3) J
Formula for the magnetic moment is given by;
M = IA
M = 6.2 × 0.004
M = 0.0248 J/T
Given
The projectile is in air for a time of t=8 sec
To find
The time it takes to reach the highest point
Explanation
A projectile moves up to the highest point and then again moves down following a parabolic path.
So it will reach the highest point at a time half the time it requires to follow teh parabolic path.
The time taken to reach the highest point is 4 sec
Conclusion
The time taken is 4 sec.