Answer:
Final temperature: 659.8ºC
Expansion work: 3*75=225 kJ
Internal energy change: 275 kJ
Explanation:
First, considering both initial and final states, write the energy balance:
Q is the only variable known. To determine the work, it is possible to consider the reversible process; the work done on a expansion reversible process may be calculated as:
The pressure is constant, so:
(There is a multiplication by 100 due to the conversion of bar to kPa)
So, the internal energy change may be calculated from the energy balance (don't forget to multiply by the mass):
On the other hand, due to the low pressure the ideal gas law may be appropriate. The ideal gas law is written for both states:
Subtracting the first from the second:

Isolating
:

Assuming that it is water steam, n=0.1666 kmol

ºC
Answer:
In the shell...
Explanation:
In the electronic shell, or the orbit..
Bohr's Atomic Model was given by Niels Bohr. He proposed that the electrons inside an atom moved around in orbits or shells. There were different shells in the atom named as K, L, M, N... These were also called energy levels...
A change in temperature is a sign that a chemical reaction has occurred. This occurs in an endothermic reaction. An endothermic process is any process which requires or absorbs energy from its surroundings, usually in the form of heat. It may be a chemical process, such as dissolving ammonium nitrate in water, or simply the melting of ice cubes.
Hopefully im not too late :/
Bestie this subject is scinece.....
Answer:
B.
Explanation:
Most metals can be drawn into a wire while nonmetals would break apart.