Answer:
91.64 km
91.64 km high material would go on earth if it were ejected with the same speed as on Io.
Explanation:
According to Newton Law of gravitation:

Where:
G is gravitational constant=
For Moon lo g is:

According to law of conservation of energy
Initial Energy=Final Energy


For Jupiter's moon Io:
Velocity is given by:

For Earth Velocity is given by:

Now:





91.64 km high material would go on earth if it were ejected with the same speed as on Io.
3,89,988 cm/min is the linear velocity
Given,
Diameter of CD = 12 cm
So, Radius of CD = 6 cm
CD is spinning at 10350 rev/min
Firstly , convert rev/min into rad/min
1 rev = 2π radians
10350 rev/min = 10350 × 2π
= 64998 rad/min
Formula used,
where,
is the Linear velocity
is the radius
is the angular velocity
= 6 cm × 64998rad/min
= 3,89,988 cm/min
Thus, linear velocity for any edge point of a 12-cm-diameter CD (compact disc) spinning at 10,350 rev/min is 389988 cm/min.
Learn more about Angular speed here brainly.com/question/540174
#SPJ4
Answer:
It's called an ampere!
Explanation:
The SI unit of electric current is the ampere, which is the flow of electric charge across a surface at the rate of one coulomb per second. The ampere (symbol: A) is an SI base unit Electric current is measured using a device called an ammeter.
Hope this helps :)
Answer:
The kidneys make urine by filtering wastes and extra water from blood. Urine travels from the kidneys through two thin tubes called ureters and fills the bladder. When the bladder is full, a person urinates through the urethra to eliminate the waste.
Explanation:
Good luckkk
It is called the reaction force of a bird flying.