Answer:
Object A
Explanation:
The object that would make you feel worse if you're hit by it is the object possessing the highest momentum. Thus, we need to find the momentum of the two objects.
Momentum of an object is the product of its mass and that of it's velocity. Momentum is given by the formula
P = M * V, where
P = momentum
M = mass of the object
V = velocity of the object
Now, solving for object A, we have
P(a) = 1.1 * 10.2
P(a) = 11.22 kgm/s
And then, solving for object B, we have
P(b) = 2 * 5
P(b) = 10 kgm/s
The object when the highest momentum is object A, and thus would make you feel worse when hit by it
We need to considerate only the horizontal component of the motion of the toy car.
The formula for the distance in a decelerated motion is:
s = s₀ + v₀·t - 1/2·a·t²
where:
s₀ = initial position = 0
v₀ = initial velocity = 1.21 m/s
t = time elapsed = 0.342 s
a = deceleration = 0.131 m/s²
Plugging in numbers:
s = 0 + 1.21×0.342 - 0.5×0.141×(0.342)²
= 0.406 m
Hence, the toy car traveled a distance of about 41 cm.
The formula for frequency is f = 1/T where f is frequency and T is period in seconds.
You have you period which is 0.008s and that is all you will need to solve or frequency in a wave:
f = 1/2
f = 1/0.008s
f = 125Hz
Explanation:
Fe₂O₃ + CO → Fe₃O₄ + CO₂
Balancing the equation above, we can derive simple mathematical equations that are very easy to solve.
aFe₂O₃ + bCO → cFe₃O₄ + dCO₂
a,b,c and d are the coefficients needed to balance the equation above;
Conserving Fe; 2a = 3c
O: 3a + b = 4c + 2d
C: b = d
let a = 1;
c = 
Since b = d
3a + d = 4c + 2d
3a = 4c + 2d - d
3a = 4c + d
a = 1, c = 
3 = 4 x
+ d
d = 
b = 
multiplying a, b, c and d by 3:
a = 3 b = 1 c = 2 and d = 1
3Fe₂O₃ + CO → 2Fe₃O₄ + CO₂
Learn more:
Balanced equation brainly.com/question/2612756
#learnwithBrainly