Answer : The acid dissociation constant Ka of the acid is, 
Explanation :
First we have to calculate the concentration of hydrogen ion.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)
Given: pH = 4.06
![4.06=-\log [H^+]](https://tex.z-dn.net/?f=4.06%3D-%5Clog%20%5BH%5E%2B%5D)
![[H^+]=8.71\times 10^{-5}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D8.71%5Ctimes%2010%5E%7B-5%7DM)
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-cα cα cα
Given:
Degree of dissociation = α = 0.10 % = 0.001
![[H^+]=c\alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha)


The expression of dissociation constant of acid is:
![K_a=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)

Now put all the given values in this expression, we get:


Thus, the acid dissociation constant Ka of the acid is, 
is the orbital hybridization of a central atom that has one lone pair and bonds to three other atoms.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about Hybridization
brainly.com/question/22765530
#SPJ4
If the solute is properly distributed in the given volume, there are 2.642 g of (NH4)2SO4 per 10 mL. For the new solution, divide the 2.642 g by the molar mass of the compound. The answer is 0.02 moles. Then, divide this by the new volume, 50 mL or 0.05 L. The concentration of the new solution is 0.4 M.
I think it might be D or B
And my other two might be A or C
Answer:
Evaporation
Explanation:
Though it doesn't require high temperatures to do so