Answer:
Boiling point of cyclohexane at 620 mm Hg is 440.6 K
Explanation:
According to clausius-clapeyron equation for a liquid-vapour equilibrium-
![ln(\frac{P_{2}}{P_{1}})=\frac{-\Delta H_{vap}}{R}(\frac{1}{T_{2}}-\frac{1}{T_{1}})](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_%7B2%7D%7D%7BP_%7B1%7D%7D%29%3D%5Cfrac%7B-%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%28%5Cfrac%7B1%7D%7BT_%7B2%7D%7D-%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%29)
where
and
are vapor pressure of liquid at
and
temperature respectively
is the molar enthalpy of vaporization of liquid
Let's assume
is equal to standard molar enthalpy of vaporization of a liquid
For cyclohexane, standard molar enthalpy of vaporization is 32.83 kJ/mol
Here,
= 620 mm Hg,
is 450.8 K (boiling point of cyclohexane) and
is 760 mm Hg
So, ![ln(\frac{620mm Hg}{760mm Hg})=\frac{-32.83\times 10^{3}J/mol}{8.314 J/(mol.K)}\times (\frac{1}{T_{2}}-\frac{1}{450.8K})](https://tex.z-dn.net/?f=ln%28%5Cfrac%7B620mm%20Hg%7D%7B760mm%20Hg%7D%29%3D%5Cfrac%7B-32.83%5Ctimes%2010%5E%7B3%7DJ%2Fmol%7D%7B8.314%20J%2F%28mol.K%29%7D%5Ctimes%20%28%5Cfrac%7B1%7D%7BT_%7B2%7D%7D-%5Cfrac%7B1%7D%7B450.8K%7D%29)
So, ![T_{2}=440.6K](https://tex.z-dn.net/?f=T_%7B2%7D%3D440.6K)