the room will either cool down or warm up the water until it is the same temperature as the room around it.
Answer:

Explanation:
From the question we are told that:
Chemical Reactions:
X=A⇌B,ΔG= 14.8 kJ/mol
Y=B⇌C,ΔG= -29.7 kJ/mol
Z=C⇌D,ΔG= 8.10 kJ/mol
Since
Hess Law
The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the number of steps taken.
Therefore
Generally the equation for the Reaction is mathematically given by

Therefore the free energy, ΔG is



The answer will be (4) HI because the greater the difference of the bonds in electronegativity, the more polar a bond is.
NAD serves as the bulk of the oxidative processes in the citric acid cycle's initial electron acceptor.
<h3>What are
electron acceptors in c
itric acid cycle?</h3>
- In the Krebs cycle, which transfers electrons via the electron transport chain with oxygen as the final acceptor, coenzymes like FAD and NAD+ are reduced.
- In a single cycle, three NADH+ and one FADH2 are produced, and when the cycle enters the electron transport chain, 10 ATP is produced.
- The final electron acceptor in the electron transport chain is oxygen. The proton gradient in the intermembrane gap is produced by NADH molecules donating electrons that are then transmitted through a number of different proteins.
<h3>What occurs throughout the citric acid cycle?</h3>
The cycle of citric acid: In the citric acid cycle, a six-carbon citrate molecule is created when an acetyl group from acetyl CoA is joined to a four-carbon oxaloacetate molecule.
Citrate is oxidized over a number of steps, generating two molecules of carbon dioxide for each acetyl group added to the cycle.
learn more about citric acid cycle here
<u>brainly.com/question/14900762</u>
#SPJ4
The answer to this question would be A. Energy is released.
When a chemical bond is a form, the bond will either suck up energy or produce energy. So, to be precise the energy is not always released but also can be absorbed. In this case, the energy released number will be a minus.
Options B and C is definitely wrong since the bond is formed by an electron, it won't affects neutron/proton.
Option D might be true since the product is made of 2 or more atoms then it would seem larger. But the size of the actual atom won't be increased.