Answer:
0.862 J/gºC
Explanation:
The following data were obtained from the question:
Mass of metal (Mₘ) = 50 g
Initial temperature of metal (Tₘ) = 100 °C
Mass of water (Mᵥᵥ) = 400 g
Initial temperature of water (Tᵥᵥ) = 20 °C
Equilibrium temperature (Tₑ) = 22 °C
Specific heat capacity of water (Cᵥᵥ) = 4.2 J/gºC
Specific heat capacity of metal (Cₘ) =?
The specific heat capacity of the metal can be obtained as follow:
Heat lost by metal = MₘCₘ(Tₘ – Tₑ)
= 50 × Cₘ × (100 – 22)
= 50 × Cₘ × 78
= 3900 × Cₘ
Heat gained by water = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
= 400 × 4.2 × (22 – 20)
= 400 × 4.2 × 2
= 3360 J
Heat lost by metal = Heat gained by water
3900 × Cₘ = 3360
Divide both side by 3900
Cₘ = 3360 / 3900
Cₘ = 0.862 J/gºC
Therefore, the specific heat capacity of the metal is 0.862 J/gºC
Because of the research already gathered from scientists before him foe which he compared data with to build his own model
Answer:
Coefficient
Explanation:
Chemical equation:
aA + bB → dD
This equation shows that reaction is balanced by coefficient q,b and d.
Reactant coefficients Product Coefficient
A a D d
B b
Every balanced equation follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass. The numbers 6 with CO₂, 6 with H₂O and 6 with O₂ are coefficient which balance the equation.
Formaldehyde is an organic compound.