Answer:
Objects with the same charge repel each other, and objects with opposite charges attract each other.
Explanation:
The Coulomb law states that opposite charges attract each other and like charges repel each other. That means two positive charges repel each other but a positive and a negative charge attract.
Helloooooooooooooooooooooo
Therefore option c , i.e. The substances in both test tubes are reactive only at high temperatures. is the only statement which is NOT supported by the student's observations.
<h3>What is the reaction between Magnesium and Hydrogen ?</h3>
Magnesium reacts with hydrochloric acid to produce hydrogen gas
Mg (s) + 2 HCl (aq) → MgCl₂ (aq) + H₂ (g)
In this reaction, the magnesium and acid are gradually used up , which can be seen in the test tube 2 .
A chemical reaction is taking place in Test tube 2 ,
Hydrogen gas is released in test tube 2 ,
Energy is released in the reaction involving hydrochloric acid and we can see in test tube 2 the reaction is going on
therefore option C i.e. The substances in both test tubes are reactive only at high temperatures. is the only statement which is NOT supported by the student's observation.
To know more about the chemical reaction between Magnesium and Hydrogen and this test.
brainly.com/question/19062002
#SPJ4
91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.
Explanation:
2NaN3======2Na+3N2
This is the balanced equation for the decomposition and production of sodium azide required to produce nitrogen.
From the equation:
2 moles of NaNO3 will undergo decomposition to produce 3 moles of nitrogen.
In the question moles of nitrogen produced is given as 2.104 moles
so,
From the stoichiometry,
3N2/2NaN3=2.104/x
= 3/2=2.104/x
3x= 2*2.104
= 1.4 moles
So, 1.4 moles of sodium azide will be required to decompose to produce 2.104 moles of nitrogen.
From the formula
no of moles=mass/atomic mass
mass=no of moles*atomic mass
1.4*65
= 91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.