Answer:
c = 0.07 j/g.k
Explanation:
Given data:
Mass of sample = 35 g
Heat absorbed = 48 j
Initial temperature = 293 K
Final temperature = 313 K
Specific heat of substance = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
ΔT = 313 k - 293 K
ΔT = 20 k
Now we will put the values in formula.
48 j = 35 g × c× 20 k
48 j = 700 g.k ×c
c = 48 j/700 g.k
c = 0.07 j/g.k
Acetic acid can be prepared from ethane by oxidizing it. Acetic acid is generally a carboxylic acid. These acids can be made by the oxidation of alcohols using potassium dichromate(VI) solution with sulfuric acid. Ethane is made into acetic acid in two steps. First it is formed into an aldehyde and then to acetic acid.
Answer:
atoms tend to react in order to gain 8 valence electrons
Explanation:
The octet rule describes the tendency of atoms of elements to react in order to have eight electrons in their valence shell. This is because having eight valence electrons confers stability to the atoms of these elements in the compounds they form.
The octet rule only does not apply to the transition elements or the inner transition elements as only the s and p electrons are involved. the electronic configuration in atoms having an octet is s²p⁶.
For example, sodium atom has one valence electron in its valence shell but a complete octet in the inner shell; it will react with chlorine atom which has seven valence electrons to form a stable compound, sodium chloride by donating its one valence electron in order to have an octet. Similarly, the chlorine atom will then have an octet by accepting the one electron from sodium atom.
So what am I suppose to answer here?