Answer:
speed of electrons = 3.25 ×
m/s
acceleration in term g is 3.9 ×
g.
radius of circular orbit is 2.76 ×
m
Explanation:
given data
voltage = 3 kV
magnetic field = 0.66 T
solution
law of conservation of energy
PE = KE
qV = 0.5 × m × v²
v =
v =
v = 3.25 ×
m/s
and
magnetic force on particle movie in magnetic field
F = Bqv
ma = Bqv
a =
a =
a = 3.82 ×
m/s²
and acceleration in term g
a =
a = 3.9 ×
g
acceleration in term g is 3.9 ×
g.
and
electron moving in circular orbit has centripetal force
F =
Bqv =
r =
r =
r = 2.76 ×
m
radius of circular orbit is 2.76 ×
m
Emf = d (phi-B) / dt
<span>B dA/dt, where dA/dt is the area swept out by the wire per unit time. </span>
<span>0.88 V = (0.075 N/(A m)) (L)(4.20 m/s), so </span>
<span>L = (0.88 J/C) / [ (0.075 N s/C m)(4.2 m/s) ] = about 3 meters</span>
Answer:
effeciency n = = 49%
Explanation:
given data:
mass of aircraft 3250 kg
power P = 1500 hp = 1118549.81 watt
time = 12.5 min
h = 10 km = 10,000 m
v =85 km/h = 236.11 m/s


kinetic energy
kinetic energy 
gravitational energy 
total energy 


effeciency n = = 49%
Given data
Power (P) = 50 hp,
= 50 × 746, we know that 1 hp = 746 W.
= 37300 Watts (Watt = J/s)
Work = 6.40 ×10⁴ J
Power is defined as rate of doing work and the unit of power is<em> Watt.</em>
Mathematically,
Power = (Work / time) Watts
= 6.40 ×10⁴ / time
37300 W = 6.40 ×10⁴ J /time (Where time in seconds)
=> time = Work/Power
= 6.40 ×10⁴/37300
= <em>1.74 seconds </em>
<em> </em><em>Therefore , the engine need 1.74 seconds to do 6.40 6.40 ×10⁴ J of work </em>
<em> </em>
Explanation:
A centripetal force (from Latin centrum, "center" and petere, "to seek") is a force that makes a body follow a curved path. (not sure but hope this helps )