Answer:ok yes
Explanation:yes of course
If 1 ken is 1.97 meter, then 1 square ken is 3.8809 square meters, and one cubic ken is 7.645373. As for the cylindrical tank, the volume of it would be 10.835 times the radius of the cylinder time 1.97^2 times pi. As you didn't specify the radius, I can't give the exact answer but that would be how to get it.
Answer:
Avogadro's law.
Explanation:
Avogadro’s law states that, equal volumes of all gases at the same temperature and pressure contain the same number of molecules.
Mathematically,
V n
V = Kn where V = volume in cm3, dm3, ml or L; n = number of moles of gas;
K = mathematical constant.
The ideal gas equation is a combination of Boyle's law, Charles' law and Avogadro’s law.
V 1/P at constant temperature (Boyle’s law)
V T at constant pressure ( Charles’law)
V n at constant temperature and pressure ( Avogadro’s law )
Combining the equations yields,
V nT/P
Introducing a constant,
V = nRT/P
PV = nRT
Where P = pressure in atm, Pa, torr, mmHg or Nm-2; V = volume in cm3, dm3, ml or L; T = temperature in Kelvin; n = number of moles of gas in mol; R = molar gas constant = 0.082 dm3atmK-1mol-1
Answer:
The change of the volume of the device during this cooling is 
Explanation:
Given that,
Mass of oxygen = 10 g
Pressure = 20 kPa
Initial temperature = 110°C
Final temperature = 0°C
We need to calculate the change of the volume of the device during this cooling
Using formula of change volume


Put the value into the formula



Hence, The change of the volume of the device during this cooling is 
Answer:
1.3 m/s
Explanation:
average speed = total distance/ total time