Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0
Answer:
<u>stationary in an electric field. </u>
<u>moving perpendicular to a magnetic field.</u>
<u>moving perpendicular to an electric</u> <u>field.</u>
Explanation:
Negative charge: In physics, the term "negative charge" is defined as a phenomenon that consists of a surplus or different electrons in any field i.e magnetic or electric field.
However, the correct answer in the question above, would be:
<u>"stationary in an electric field". </u>
<u>"moving perpendicular to a magnetic field".</u>
<u>"moving perpendicular to an electric</u> <u>field".</u>
Answer:
The car needs nearly 2.6 s
<span>There are several ways to change the frictional force between two objects. The first one is to modify the surfaces of each object that will come in contact with each other. The smoother they get, the less friction there will be. But if the surfaces become rougher, more friction will be generated. If you don’t want to alter the surfaces, you can simply add lubrication to reduce friction.</span>