Answer:
Step-by-step explanation:
<h3>Given</h3>
<h3>Find</h3>
- Solve for x
- Find x when p = -5
<h3>Solution</h3>
- 4(px + 1) = 64
- 4(px + 1)/4 = 64/4
- px + 1 = 16
- px = 15
- x = 15/p
<u>When p = -5, substitute p:</u>
Answer:
median 1B: 310
Step-by-step explanation:
Answer:
Graph B
Step-by-step explanation:
Answer:
![f(x)=4\sqrt[3]{16}^{2x}](https://tex.z-dn.net/?f=f%28x%29%3D4%5Csqrt%5B3%5D%7B16%7D%5E%7B2x%7D)
Step-by-step explanation:
We believe you're wanting to find a function with an equivalent base of ...
![4\sqrt[3]{4}\approx 6.3496](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B4%7D%5Capprox%206.3496)
The functions you're looking at seem to be ...
![f(x)=2\sqrt[3]{16}^x\approx 2\cdot2.5198^x\\\\f(x)=2\sqrt[3]{64}^x=2\cdot 4^x\\\\f(x)=4\sqrt[3]{16}^{2x}\approx 4\cdot 6.3496^x\ \leftarrow\text{ this one}\\\\f(x)=4\sqrt[3]{64}^{2x}=4\cdot 16^x](https://tex.z-dn.net/?f=f%28x%29%3D2%5Csqrt%5B3%5D%7B16%7D%5Ex%5Capprox%202%5Ccdot2.5198%5Ex%5C%5C%5C%5Cf%28x%29%3D2%5Csqrt%5B3%5D%7B64%7D%5Ex%3D2%5Ccdot%204%5Ex%5C%5C%5C%5Cf%28x%29%3D4%5Csqrt%5B3%5D%7B16%7D%5E%7B2x%7D%5Capprox%204%5Ccdot%206.3496%5Ex%5C%20%5Cleftarrow%5Ctext%7B%20this%20one%7D%5C%5C%5C%5Cf%28x%29%3D4%5Csqrt%5B3%5D%7B64%7D%5E%7B2x%7D%3D4%5Ccdot%2016%5Ex)
The third choice seems to be the one you're looking for.
Answer: See attached table
Step-by-step explanation:
+---+---+---+
| 1 | 8 | 2 |
+---+---+---+
| 6 | 4 | 2 |
+---+---+---+
| 5 | 0 | 7 |
+---+---+---+
<u>Proofs:</u>
First row: 1+6+5 = 12
Second row: 8+4+0 = 12
Third row: 2+2+7 = 12
First column: 1+8+2 = 12
Second column: 6+4+2 = 12
Third column: 5+0+7 = 12
Diagonal starting from top left to bottom right: 1+4+7 = 12
Diagonal staring from top right to bottom left: 2+4+5 = 12