Answer:
They are held together by hydrogen bonds
Explanation:
Hydrogen bonds are special dipole-dipole attractions between polar molecules in which a hydrogen atom is directly joined to a highly electronegative atom(oxygen or nitorgen or fluorine).
Such molecules includes water, alkanoic acids, ammonia and amines.
A hydrogen nucleus has a high concentration of positive charge. The bond is actually an electrostatic attraction between the hydrogen atom of one molecule and the electronegative atom(O or N or F).
Hydrogen bonds are very effective in binding molecules into larger units. Most substances that joins with hydrogen bonds have a higher boiling point and lower volatility.
This is why we have a strong intermolecular bond between water molecules.
Answer:
1.Sulfur dioxide and nitrogen oxide
2.a)it forms carbonic acid
b)
3.the community can use renewable energy like solar and wind power cause they produce less pollution
Answer:
See explanation
Explanation:
For a reaction that proceeds by E1 mechanism, the rate determining step involves the formation of the carbocation.
The rate of formation of this carbocation depends only on the concentration of the t-butyl bromide since it is the only specie that enters into the rate equation.
Hence, when the concentration of t-butyl bromide is tripled, the rate of reaction is tripled.
Methanol does not enter into the rate equation hence doubling its concentration does not affect the rate of reaction.
Answer:
I) the heat capacity of ammonia(s)
II) the heat capacity of ammonia(ℓ)
IV) the enthalpy of fusion of ammonia
Explanation:
Initially, ammonia at 200 K is liquid. To calculate the change of enthalpy from 200 K to 195 K (melting point) we need to know the heat capacity of ammonia(ℓ).
At 195, ammonia is in the transition from liquid to solid (solidification). To calculate the change of enthalpy in that process we need to know the enthalpy of solidification of ammonia, which has the same value but opposite sign to the enthalpy of fusion of ammonia.
From 195 K to 0 K, ammonia is solid. To calculate the change of enthalpy in that process we need to know the heat capacity of ammonia(s).