Answer:
The answer is 3.48 seconds
Explanation:
The kinematic equation
y= y0+V0*t+1/2*a*(t*t)
-50=0+(0)t+1/2(-9.8)*(t*t)
t=3.194 seconds
During ribbons ball,
x=x0+ Vt+1/2*a*(t*t)
x= 0+(15)*(3.194)+1/2*(0)* (3.194*3.194)
x= 47.9157m
So, distance (D) = 100-47.9157= 52.084m
52.084m=0+15(t)+1/2*(0)(t*t)
t=52.084/15=3.472286= 3.48seconds
Answer:
Momentum of block B after collision =
Explanation:
Given
Before collision:
Momentum of block A =
= 
Momentum of block B =
= 
After collision:
Momentum of block A =
= 
Applying law of conservation of momentum to find momentum of block B after collision
.

Plugging in the given values and simplifying.


Adding 200 to both sides.


∴ 
Momentum of block B after collision =
Answer:
beacause it's contracts
Explanation:
when using a large bottomed glass the hot water cools that's why is good to use thin bottomed glass
Answer:
a. chemical contamination of streams ans rivers
d. adaptation
Answer:
deflected toward bottom of the screen
Explanation:
When entering the region with magnetic field, a magnetic force is exerted on the proton. This force is perpendicular to both the direction of the magnetic field and the direction of the velocity of the proton.
The direction of the force can be determined by using the right-hand rule. We have:
- Index finger: direction of the velocity of the proton --> to the right
- Middle finger: direction of the magnetic field --> into the screen
- Thumb: direction of the magnetic force --> toward bottom of the screen
So, the correct answer is
deflected toward bottom of the screen