Answer
given,
mass of the piano = 170 kg
angle of the inclination = 20°
moves with constant velocity hence acceleration = 0 m/s²
neglecting friction
so, force required to pull the piano
F = m g sin θ
F = 170 × 9.81 × sin 20°
F = 570.39 N
so, force required by the man to push the piano is F = 570.39 N
W, because as time is moving up at a consistent rate the speed is as well, creating the straight line.
BALANCED FORCES
When two forces acting on an object are equal in size but act in opposite directions, we say that they are balanced forces . a stationary object stays still. ... a moving object continues to move at the same speed and in the same direction.
- <em>BRAINLIEST answerer</em>
Answer:
PE = 44.1 J
Explanation:
Ok, to have the specific data, the first thing we must do is convert from grams to kilograms. Since mass must always be in kilograms (kg)
We have:
- 1 kilograms = 1000 grams.
We convert it using a rule of 3, replacing, simplifying units and solving:
==================================================================
Earth's gravity is known to be 9.8 m/s², so we have:
Data:
- m = 0.3 kg
- g = 9.8 m/s²
- h = 15 m
- PE = ?
Use formula of potencial energy:
Replace and solve:
Since the decimal number, that is, the number after the comma is less than 5, it cannot be rounded, then we have this result.
The potential energy of the volleyball is <u>44.1 Joules.</u>
Greetings.
Answer:
e = Δφ / Δt induced emf is proportional to enclosed flux
Also φ = B * A flux is proportional to area and enclosed field
If the induced emf e increases with time than the flux and hence the magnetic field is increasing with time (replace B with G)
Since e = ΔG * A / Δt if e is linear then G must also be linear and be proportional to the time