Answer:
The gravity, which is an acceleration to the center of the earth, will be the same.
Explanation:
The gravity on earth depends only on the masses and distance, between two objects. We can see it in the gravitational force equation.
Now if we put a man, with mass m, on the surface of the earth, with mass M, the distance from the center of mass and the man will be R (earth radius). Knowing that F = m*a, we can find the accelerations due to this mass M and this value will be 9.81 m/s².
On the other hand, the moon has a gravity value and is less than the earth, because its mass, and affects the water sea due to the gravitational force between earth and moon. If the moon changes the rate of its rotate it changes probably the distance between them, let's recall they must conserve angular momentum, but the gravity won't be affected.
Therefore, the gravity, which is an acceleration to the center of the earth, will be the same.
I hope it helps you!
The answer is radiation I believe
Answer:
Distance is 800 m and Displacement is 0 m
Explanation:
Total Distance
= 400(2)
= <u>800</u><u> </u><u>m</u>
Total Displacement
= <u>0</u><u> </u><u>m</u> since she returns to the same spot
Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
The watt<span> (symbol: W) is a unit of power i hope this helps you</span>