Answer:
Sample Response: In a vacuum, there are no atoms or particles that interfere with the path of light. However, in other media, the speed of light is lower than 3.0 × 108 m/s because the wave is continuously absorbed and re-emitted by each atom in its path. The differences in speed are due to the composition of the medium and the density of the particles in the medium.
Explanation:
Answer:
e) indicated that the speed of light is the same in all inertial reference frames.
Explanation:
In 18th century, many scientists believed that the light just like air and water needs a medium to travel. They called this medium <em>aether</em>. They believed that even the space is not empty and filled with aether.
Michelson and Morley tried to prove the presence and speed of this aether through an interference experiment in 1887. They made an interferometer in which light was emitted at various angles with respect to the supposed aether. Both along the flow and against the flow to see the difference in the speed of light. But they did not find no major difference and thus it became the first proof to disprove the theory of aether.
It thus proved that the speed of light remains same in all inertial frames.
Also, it became a base for the special theory of relativity by Einstein.
Answer:This quest took a huge leap forward in 2000 when Hubble studied the exoplanet HD 209458 b, the first extrasolar planet known to make “transits” across the face of its star. Hubble became the first telescope to directly detect an exoplanet's atmosphere and survey its makeup.
Explanation:
Voltage = (current) x (resistance)
= (19 A) x (14 ohms) = 266 volts .
Note: Be careful using that thing !
It's dissipating
I² R = (19 A)² x (14 ohms) = 5,054 watts ! ! !
That's an awful lot of power for a blow-dryer !
The dryer is certainly not using very much of that power to run the fan.
Most of it is being used to heat air. 5 kilowatts is more power than most
toasters or microwave ovens use, so please be careful with how much of
your hair or skin you expose to that hot-air blast. You could probably cook
a meatloaf with it.