The smallest difference in voltage that can be resolved is referred to as the resolution. The resolution can be calculated with the following formula:
resolution=voltage range / digital range
The voltage range in our case is from -500mV to 500mV, which gives 1000mV.
The digital range on the other hand is 2^(number of bits).
It depends on what type of bit board we are using. If the ADC we are using is a 16 bit board, then 2^16=<span>65536.
So, the resolution is:
resolution=1000mV/</span><span>65536=0.015 mV</span>
When you touch<span> a doorknob (or something else made of metal), which has a positive charge with few electrons.</span>
Answer:
in left
Explanation:
Hope it will help
<em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>m</em><em>a</em><em>r</em><em>k</em><em> </em><em>a</em><em>s</em><em> </em><em>a</em><em> </em><em>b</em><em>r</em><em>a</em><em>i</em><em>n</em><em>l</em><em>i</em><em>s</em><em>t</em><em>s</em>
Explanation:
For the equilibrium:
\rho_{wood}gh-\rho_{oil}g(h-x)-\rho_{water}gx=0ρ
wood
gh−ρ
oil
g(h−x)−ρ
water
gx=0
\rho_{wood}h-\rho_{oil}(h-x)-\rho_{water}x=0ρ
wood
h−ρ
oil
(h−x)−ρ
water
x=0
(974)(3.97)-928(3.97-x)-1000x=0(974)(3.97)−928(3.97−x)−1000x=0
x=2.54\ cmx=2.54 cm