Answer:
4KO₂ + 2CO₂ -> 2K₂CO₃ + 3O₂
<u> Step 1: Find the moles of O₂.</u>
n(O₂) = mass/ Mr.
n(O₂) = 100 / 32 = 3.125 mol
<u>Step 2: Find the ratio between KO₂ and O₂.</u>
<u>KO₂ </u> : <u> O₂</u>
4 : 3
4/3 : 1
(4*3125)/3 : 3.125
=4.167 mol of KO₂
Thus now we know, to produce 100 g of O₂, we need 4.167mol of KO₂
<u>Step 3: Find the mass of KO₂:</u>
<u />
mass = mol * Mr. (KO₂)
Mass = 4.167* 71.1
Mass = 296.25 g
The molar concentration of the original HF solution : 0.342 M
Further explanation
Given
31.2 ml of 0.200 M NaOH
18.2 ml of HF
Required
The molar concentration of HF
Solution
Titration formula
M₁V₁n₁=M₂V₂n₂
n=acid/base valence (amount of H⁺/OH⁻, for NaOH and HF n =1)
Titrant = NaOH(1)
Titrate = HF(2)
Input the value :

The correct answer is a.) C. Oxidation occurs when an element loses electrons and increases its oxidation state. In the chemical equation, Carbon in CH4 has an oxidation state of 4- while Carbon in CO2 has an oxidation of 4+.
It is the substance that is totally consumed when the chemical reaction is complete....