Answer:
Option C= A hydrogen bond formed between a polar side chain and a hydrophobic side chain.
Explanation:
All three given options a, b and d have common mechanism to accommodate the polar amino acid.
A= A hydrogen bond forms between two polar side chains.
B= A hydrogen bond from between a polar side chain and protein back bone.
D = hydrogen bond form between polar side chains and a buried water molecules.
All these are use to accommodate the polar amino acid.
While option C is not used. which is:
A hydrogen bond formed between a polar side chain and a hydrophobic side chain.
Answer:
5.6L
Explanation:
At STP, the pressure and temperature of an ideal gas is
P = 1 atm
T = 273.15k
Volume =?
Mass = 9.5g
From ideal gas equation,
PV = nRT
P = pressure
V = volume
n = number of moles
R = ideal gas constant =0.082J/mol.K
T = temperature of the ideal gas
Number of moles = mass / molar mass
Molar mass of F2 = 37.99g/mol
Number of moles = mass / molar mass
Number of moles = 9.5 / 37.99
Number of moles = 0.25moles
PV = nRT
V = nRT/ P
V = (0.25 × 0.082 × 273.15) / 1
V = 5.599L = 5.6L
The volume of the gas is 5.6L
Answer:
[H⁺] = 3.16 × 10⁻⁵ mol/L
Explanation:
Given data:
pH of solution = 4.5
Hydrogen ion concentration = ?
Solution;
pH = -log [H⁺]
we will rearrange this formula:
[H⁺] = 10∧-pH
[H⁺] = 10⁻⁴°⁵
[H⁺] = 3.16 × 10⁻⁵ mol/L
Uranium-238 is the element that undergoes decay to yield uranium-234