Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
[r] =6
Solve for r by simplifying both sides of the equation, then isolating the variable.
<em> </em>I hope this makes sense
Answer:
Photosynthesis
Explanation:
Studies about the time period of oxygen accumulation suggests that free oxygen was first produced by prokaryotic and then later by eukaryotic organisms in the ocean. These organisms carried out photosynthesis more efficiently, producing oxygen as a waste product.
The organism mainly responsible for this is known as cyanobacteria, or blue-green algae. These microbes conduct photosynthesis: using sunshine, water and carbon dioxide to produce carbohydrates and, oxygen.
Answer:
The magnitude will be "353.5 N". A further solution is given below.
Explanation:
The given values is:
F = 500 N
According to the question,
In ΔABC,
⇒ 
⇒ 
then,
⇒ 
⇒ 
Now,
The corresponding angle will be:
⇒ 
⇒ 
⇒ 
Aspect of F across the AC arm will be:
= 
On putting the values of F, we get
= 
= 
Component F along the AC (in magnitude) will be:
= 
= 
= 