Answer:
The stress is calculated as 
Solution:
As per the question:
Length of the wire, l = 75.2 cm = 0.752 m
Diameter of the circular cross-section, d = 0.560 mm = 
Mass of the weight attached, m = 25.2 kg
Elongation in the wire, 
Now,
The stress in the wire is given by:
(1)
Now,
Force is due to the weight of the attached weight:
F = mg = 
Cross sectional Area, A = 
Using these values in eqn (1):
D, it is considered unethical today
Acceleration a=3m/s^2
time t= 4.1seconds
Final velocity V= 55km/h
initial velocity U= ?
First convert V to m/s
36km/h=10m/s
55km/h= 55*10/36=15.28m/s
Using the formula V= U+at
U= V-at
U= 15.28-3*4.1=15.28-12.3=2.98m/s
Initial velocity U= 2.98m/s or 10.73km/h (Using the conversion rate 36km/h=10m/s)
Explanation:
Period of a mass on a spring is:
T = 2π√(m/k)
T is inversely proportional with the square root of k. So as the spring constant increases, the period decreases.
I'm pretty sure the energy an object acquires when exposed to a force is known was potential energy.