1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
almond37 [142]
3 years ago
11

Am I alive I really need to know?

Engineering
1 answer:
Nesterboy [21]3 years ago
5 0
Hell no,cause i’m not
You might be interested in
Technician A says that a defective crankshaft position sensor can cause a no spark condition technician B says that a faulty ign
Aliun [14]
Both tech distributor ignition
5 0
3 years ago
How many GT2RS cars were made in 2019
labwork [276]

Answer:

1000

Explanation:

3 0
3 years ago
Read 2 more answers
Can high throttle torque tend to open the throttle plate
koban [17]

Answer:

no

Explanation:

7 0
3 years ago
For a turbulent flow of a fluid in 0.6 m diameter pipe, the velocity 0.15 m from the wall is 2.7 m/s. Estimate the wall shear st
MAVERICK [17]

Answer:

If the turbulent velocity profile in a pipe of diameter 0.6 m may be approximated by u/U=(y/R)^(1/7), where u is in m/s and y is in m and 0.15 m from the pipe.

Explanation:

hope it helps

3 0
3 years ago
A cylindrical resistor element on a circuit board dissipates 0.6 W of power. The resistor is 1.5 cm long, and has a diameter of
Burka [1]

Answer:

a. 51.84Kj

b. 2808.99 W/m^2

c. 11.75%

Explanation:

Amount of heat this resistor dissipates during a 24-hour period

= amount of power dissipated * time

= 0.6 * 24 = 14.4 Watt hour

(Note 3.6Watt hour = 1Kj )

=14.4*3.6 = 51.84Kj

Heat flux = amount of power dissipated/ surface area

surface area = area of the two circular end  + area of the curve surface

=2*\frac{\pi D^{2} }{4} + \pi DL\\=2*\frac{\pi *(\frac{0.4}{100} )^{2} }{4} + \pi *\frac{0.4}{100} *\frac{1.5}{100}

= 2.136 *10^-4 m^{2}

Heat flux =\frac{0.6}{2.136 * 10^{-4} } = 2808.99 W/m^{2}

fraction of heat dissipated from the top and bottom surface

=\frac{\frac{2*\pi D^{2} }{4} }{\frac{2*\pi D^{2}}{4} + \pi DL } \\\\=\\\frac{\frac{2*\pi *(\frac{0.4}{100} )^{2} }{4} }{\frac{2*\pi *(\frac{0.4}{100}  )^{2} }{4} +\pi *\frac{0.4}{100} *\frac{1.5}{100} } \\\\=\frac{2.51*10^{-5} }{2.136*10^{-4} } \\\\\= 0.1175

=11.75%

8 0
3 years ago
Read 2 more answers
Other questions:
  • The purpose of daytime running lights (DRLs) is to _____.
    5·2 answers
  • Assuming the point estimate in Problem 6.36 is the true population parameter, what is the probability that a particular assay, w
    15·1 answer
  • Unwanted resistance is being discussed.
    12·1 answer
  • Calculate the molar heat capacity of a monatomic non-metallic solid at 500K which is characterized by an Einstein temperature of
    8·1 answer
  • Write multiple if statements
    5·1 answer
  • Who is???????????????????
    13·1 answer
  • Vector A extends from the origin to a point having polar coordinates (7, 70ᵒ ) and vector B extends from the origin to a point h
    9·1 answer
  • Select the correct answer <br><br> What is the simplest definition of a manufacturing process?
    5·2 answers
  • Kyla has obtained a bachelor’s degree in electronics engineering. In her search for a job, she comes across an advertisement tha
    11·1 answer
  • Compare and contrast mechanical properties of plastics, metals and ceramics.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!