Answer:
Rated power = 1345.66 W/m²
Mechanical power developed = 3169035.1875 W
Explanation:
Wind speed, V = 13 m/s
Coefficient of performance of turbine,
= 0.3
Rotor diameter, d = 100 m
or
Radius = 50 m
Air density, ρ = 1.225 kg/m³
Now,
Rated power = 
or
Rated power = 
or
Rated power = 1345.66 W/m²
b) Mechanical power developed = 
Here, A is the area of the rotor
or
A = π × 50²
thus,
Mechanical power developed = 
or
Mechanical power developed = 3169035.1875 W
Answer:
Electrical Capacitance
Explanation:
To find - unit of measure in SI for F
Solution -
The answer is - Electrical Capacitance
Reason -
The farad (symbol: F) is the SI derived unit of electrical capacitance, the ability of a body to store an electrical charge.
Răspuns:
Capacitate electrică
Explicaţie:
Pentru a găsi - unitate de măsură în SI pentru F
Soluție -
Răspunsul este - Capacitate electrică
Motiv -
Farada (simbolul: F) este unitatea de capacitate electrică derivată din SI, capacitatea unui corp de a stoca o sarcină electrică.
Answer:
increases by a factor of 6.
Explanation:
Let us assume that the initial cross sectional area of the pipe is A m² while the initial velocity of the water is V m/s², hence the flow rate of the water is:
Initial flow rate = area * velocity = A * V = AV m³/s
The water speed doubles (2V m/s) and the cross-sectional area of the pipe triples (3A m²), hence the volume flow rate becomes:
Final flow rate = 2V * 3A = 6AV m³/s = 6 * initial flow rate
Hence, the volume flow rate of the water passing through it increases by a factor of 6.
The advantages that can be associated to
drawings and symbols over written descriptions in engineering design and prototyping process are;
Communicate design ideas as well as technical information to engineers.
Symbols and drawings can be universal which means it is easy to interpret any where by professionals.
- An engineering drawing serves as complex dimensional object and symbol use by engineer to communicate.
- Drawings and symbols makes it easier to communicate design ideas and technical information to engineers and and how the process will go.
Therefore, drawings and symbols is universal to all engineer unlike written one.
Learn more at:
brainly.com/question/20925313?referrer=searchResults
Answer:
COP(heat pump) = 2.66
COP(Theoretical maximum) = 14.65
Explanation:
Given:
Q(h) = 200 KW
W = 75 KW
Temperature (T1) = 293 K
Temperature (T2) = 273 K
Find:
COP(heat pump)
COP(Theoretical maximum)
Computation:
COP(heat pump) = Q(h) / W
COP(heat pump) = 200 / 75
COP(heat pump) = 2.66
COP(Theoretical maximum) = T1 / (T1 - T2)
COP(Theoretical maximum) = 293 / (293 - 273)
COP(Theoretical maximum) = 293 / 20
COP(Theoretical maximum) = 14.65