Answer:
The change in volume is 
Solution:
As per the question:
Coefficient of linear expansion of Copper, 
Initial Temperature, T =
= 273 K
Final Temperature, T' =
= 273 + 100 = 373 K
Now,
Initial Volume of the block, V = 



where
V' = Final volume


C) the moon does not have a strong magnetic field
Answer:
Hi
Final temperature = 250.11 °C
Final volume = 0,1 m3.
Process work = 0
Explanation:
The specific volume in the initial state is: v = 0.1m3/2 kg = 0.05 m3/kg.
This volume is located between the volumes as saturated liquid and saturated steam at 20 °C. For this reason the water is initially in a liquid vapor mixture. As the piston was blocked the volume remains constant and the process is isometric, also known as isocoric process, so the final temperature will be the water temperature at a saturated steam of v=0.05m3/kg, which is obtained by using steam tables for water, by linear interpolation. As follows, using table A-4 of the Cengel book 7th Edition:
v=0.05 m3/kg
v1=0.057061 m3/kg
T1=242.56°C
v2=0.049779 m3/kg
T2=250.35°C
T=
The process work is zero because there is no change in volume during heating:
W=PxΔv=Px0=0
where
W=process work
P=pressure
Δv=change of volume, is zero because the piston was blocked so the volume remains constant.
Explanation:
By using v=( f )x( lambda )
v= 45 s^-1 x 3 m
Therefore v = 135 ms^-1
Answer:

Explanation:
It is given that,
Mass of Albertine, m = 60 kg
It can be assumed, the spring constant of the spring, k = 95 N/m
Compression in the spring, x = 5 m
A glass sits 19.8 m from her outstretched foot, h = 19.8 m
When she just reach the glass without knocking it over, a force of friction will also act on it. Using the conservation of energy for the spring mass system such that,




So, the coefficient of kinetic friction between the chair and the waxed floor is 0.101. Hence, this is the required solution.