In an inelastic collision, only momentum is conserved, while energy is not conserved.
1) Velocity of the nail and the block after the collision
This can be found by using the total momentum after the collisions:

where
m=0.1 kg is the mass of the nail
M=10 kg is the mass of the block of wood
Rearranging the formula, we find

, the velocity of the nail and the block after the collision:

2) The velocity of the nail before the collision can be found by using the conservation of momentum. In fact, the total momentum before the collision is given only by the nail (since the block is at rest), and it must be equal to the total momentum after the collision:

Rearranging the formula, we can find

, the velocity of the nail before the collision:
The number 3252.6 has 5 significant figures
This is a perfect opportunity to stuff all that data into the general equation for the height of an object that has some initial height, and some initial velocity, when it is dropped into free fall.
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
Height at any time 'T' after the drop =
(initial height) +
(initial velocity) x (T) +
(1/2) x (acceleration) x (T²) .
For the balloon problem ...
-- We have both directions involved here, so we have to define them:
Upward = the positive direction
Initial height = +150 m
Initial velocity = + 3 m/s
Downward = the negative direction
Acceleration (of gravity) = -9.8 m/s²
Height when the bag hits the ground = 0 .
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
0 = (150m) + (3m/s T) + (1/2 x -9.8 m/s² x T²)
-4.9 T² + 3T + 150 = 0
Use the quadratic equation:
T = (-1/9.8) [ -3 plus or minus √(9 + 2940) ]
= (-1/9.8) [ -3 plus or minus 54.305 ]
= (-1/9.8) [ 51.305 or -57.305 ]
T = -5.235 seconds or 5.847 seconds .
(The first solution means that the path of the sandbag is part of
the same path that it would have had if it were launched from the
ground 5.235 seconds before it was actually dropped from balloon
while ascending.)
Concerning the maximum height ... I don't know right now any other
easy way to do that part without differentiating the big equation.
So I hope you've been introduced to a little bit of calculus.
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
H'(t) = v₀ + a T
The extremes of 'H' (height) correspond to points where h'(t) = 0 .
Set v₀ + a T = 0
+3 - 9.8 T = 0
Add 9.8 to each side: 3 = 9.8 T
Divide each side by 9.8 : T = 0.306 second
That's the time after the drop when the bag reaches its max altitude.
Oh gosh ! I could have found that without differentiating.
- The bag is released while moving UP at 3 m/s .
- Gravity adds 9.8 m/s of downward speed to that every second.
So the bag reaches the top of its arc, runs out of gas, and starts
falling, after
(3 / 9.8) = 0.306 second .
At the beginning of that time, it's moving up at 3 m/s.
At the end of that time, it's moving with zero vertical speed).
Average speed during that 0.306 second = (1/2) (3 + 0) = 1.5 m/s .
Distance climbed during that time = (average speed) x (time)
= (1.5 m/s) x (0.306 sec)
= 0.459 meter (hardly any at all)
But it was already up there at 150 m when it was released.
It climbs an additional 0.459 meter, topping out at 150.459 m,
then turns and begins to plummet earthward, where it plummets
to its ultimate final 'plop' precisely 5.847 seconds after its release.
We can only hope and pray that there's nobody standing at
Ground Zero at the instant of the plop.
I would indeed be remiss if were to neglect, in conclusion,
to express my profound gratitude for the bounty of 5 points
that I shall reap from this work. The moldy crust and tepid
cloudy water have been delicious, and will not soon be forgotten.
Answer:
There are <u>5</u> significant figures.
Explanation:
You must start conting your sig figs until you continue to hit zeros at the end. Those zeroes at the end are disregarded. So 0.0609 is where you get your <em>sig figs</em> from.
Answer:
1402.73 m
Explanation:
Mass of Azurite=3.25 lb
Percent of copper in AZurite mineral=55.1%
Diameter of copper wire,d=0.0113 in
Radius of copper wire=

Density of copper=
1 lb=454 g
3.25 lb=
Mass of Azurite=
Mass of copper=
Density=
Using the formula

Volume of copper wire=
Radius of copper wire=
1 in=2.54 cm
Volume of copper wire=

Using the formula



1 m=100 cm

Hence, the length of copper wire required=1402.73 m