Answer:
≅3666.67 N
Explanation:
Use Newton's 2nd law, F = ma where F=force applied, m = mass of the object,
a = acceleration acquired by the object.
a= (v-u)/t where v = final velocity, u = initial velocity and t = time taken
calculate a = (30-0)/9 ≅ 3.33 m/s2
Then F = 1100×a = 3666.67 N
Answer:
The magnitude of the magnetic field is
.
Explanation:
Given that,
Charge, 
Speed of the charged particle, 
The angle between the velocity of the charge and the field is 56°.
The magnitude of force, 
We need to find the magnitude of the magnetic field. When a charged particle moves in the magnetic field, the magnetic force is experienced by it. The force is given by :

B is the magnetic field.

So, the magnitude of the magnetic field is
. Hence, this is the required solution.
The density of the object is approximately 1.91 kg per m³.
42 kg is a measure of mass, and 22 m³ is a measure of volume. Knowing this, you can use the relationship

to solve for the object's density.
42 kg

22 m³

1.91 kg per m³.
Well, I'm not sure right now that it actually does.
But if it does, that's because the sun is about 400 times
FARTHER from the Earth than the moon is.
Th answer is it could gain or loss magnetism.
Ferromagnetism is a kind of magnetism that is associated with cobalt, iron, and nickel and on some alloys or compounds containing one or more of the said elements, It also occurs in gadolinium, which is a rare-earth element. In comparison to other substances, ferromagnetic materials can be magnetized easily and in strong magnetic fields, the magnetization approaches a definite limit called stauration.
If an external field is applied and subsequently removed which does not return the magnetization to its original state or value it is called hysteresis. When heated to a certain temperature (Curie point), which is unique for each substance, ferromagnetic materials would somehow lose their magnetic properties and cease to be magnetic. Once they would cool down, their magnetism would return.