Answer:
T - M g - Ff = M a describes the acceleration of the object
T = M g + Ff if the object moves at constant speed (a = zero)
Ff = μ M g = .3 * 40 * 9.8 = 118 N the force of friction
Ff will be in a direction opposite to the motion
M g = 40 kg * 9.8 m/s = 392 N
a) T = M g + Ff for an object moving upwards
T = 392 + 118 = 510 N
b) T = M g - Ff for an object moving downwards
T = 392 - 118 = 274 N
skin cancer and it cause to lost transportating process
Answer:
D. The cart is moving at a constant speed or velocity
Explanation:
Equilibrium is a state of body in which it is either at rest or moves with uniform velocity. The sum of forces acting on such a body is always zero and the sum of all the torques acting on it is also zero.
There are two types of equilibrium as follows:
Static Equilibrium: When a body is at rest it is said to be in static equilibrium.
Dynamic Equilibrium: When a body is moving with constant velocity, then it is said to be in dynamic equilibrium.
Hence, the correct option here will be:
<u>D. The cart is moving at a constant speed or velocity</u>
Answer:
The moment of inertia of large ring is 2MR².
(A) is correct option.
Explanation:
Given that,
Mass of ring = M
Radius of ring = R
Moment of inertia of a thin ring = MR²
Moment of inertia :
Moment of inertia is the product of the mass of the ring and square of radius of the ring.
We need to calculate the moment of inertia of large ring
Using formula of moment of inertia

Where,
= moment of inertia at center of mass
M = mass of ring
R = radius of ring
Put the value into the formula


Hence, The moment of inertia of large ring is 2MR².
the resultant force is F=F1-F2.
F1 = 20 N, and F2 = 50 N
In this instance, two different resultant forces are feasible.
when the two are at an angle of A with one another.
See the outcome in case 1 of the image if both are facing the same way. if they are both facing the opposite directions. when both are at a zero-degree angle from one another If they are parallel to one another and moving in the same direction, the resultant force is F=F1+F2. If they are parallel but moving in the opposite direction, the resultant force is F=F1-F2.
Learn more about resultant force here-
brainly.com/question/16380983
#SPJ9