Answer:
<h2>464.85 mL</h2>
Explanation:
The new volume can be found by using the formula for Boyle's law which is

Since we're finding the new volume

100.7 kPa = 100,700 Pa
95.1 kPa = 95,100 Pa
We have

We have the final answer as
<h3>464.85 mL</h3>
Hope this helps you
If an object has a higher density than the fluid it is in (fluid can mean liquid or gas), it will sink. If it has a lower density, it will float. Density is determined by an object's mass and volume. If two objects take up the same volume, but have one has more mass, then it also has a higher density.
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
Answer:
O B. Convert the 10 g of NaCl to moles of NaCl.
Explanation:
The formula for finding the molality is m=moles of solute/kg of solvent. The solute for this question is NaCl and the solvent is water.
(10g NaCl)(1 mol NaCl/58.44g NaCl)=0.1711 mol NaCl
58.44 is the molar mass of NaCl
m=0.1711 mol NaCl/2 kg H2O
m=0.085557837
I can’t answer you but here have a meme