140 g of nitrogen (N₂)
Explanation:
We have the following chemical equation:
N₂ + 3 H₂ -- > 2 NH₃
Now, to find the number of moles of ammonia we use the Avogadro's number:
if 1 mole of ammonia contains 6.022 × 10²³ molecules
then X moles of ammonia contains 6.022 × 10²⁴ molecules
X = (1 × 6.022 × 10²⁴) / 6.022 × 10²³
X = 10 moles of ammonia
Taking in account the chemical reaction we devise the following reasoning:
If 1 mole of nitrogen produces 2 moles of ammonia
then Y moles of nitrogen produces 10 moles of ammonia
Y = (1 × 10) / 2
Y = 5 moles of nitrogen
number of moles = mass / molecular weight
mass = number of moles × molecular weight
mass of nitrogen (N₂) = 5 × 28 = 140 g
Learn more about:
Avogadro's number
brainly.com/question/13772315
#learnwithBrainly
The correct answer should be B) Water vapor and carbon dioxide in the atmosphere trap heat.
The trapped heat cannot leave the atmosphere and as it is trapped, it increases the heat of the planet.
At the molecular level, temperature is related to the random<span> motions of the particles (</span>atoms<span> and molecules) in </span>matter<span>. Because there are different types of </span>motion, the particles' kinetic energy (energy of motion) can take different forms, and each form contributes to the total kinetic energy of the particles.<span>
<span>
</span></span>
It lowers the amount of energy required to break chemical bonds.
The Arrhenius Theory
The Brönsted-Lowry Theory
The Lewis Theory
(let me know if needed explanation)