40x+8x^2=0 can be solved for x (there are two solutions):
Divide all 3 terms by the greatest common multiple (which is 8x):
40x+8x^2=0
------------- -----
8x 8x
5 + x = 0 produces the root x = - 5.
Setting 8x = 0 and solving for x produces the root x = 0.
Be certain to check these results. substitute x = -5 into 40x+8x^2=0. Is the resulting equation true or false? Next, subs. x=-5 into 40x+8x^2=0. Is the resulting equation true or false?
<h2>
<u>Requi</u><u>red</u><u> Answer</u><u> </u><u>:</u><u>-</u></h2>
Given system of linear equations are ,
And we need to find the Solution of the linear equation . So let's Firstly number the equations .
<u>→</u><u> </u><u>Multipl</u><u>ying</u><u> </u><u>equⁿ</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>by</u><u> </u><u>3</u><u> </u><u>,</u>
=> 3 ( x + y ) = 2*3
=> 3x + 3y = 6
<u>→</u><u> </u><u>Addin</u><u>g</u><u> </u><u>the</u><u> </u><u>two</u><u> </u><u>equations </u><u>,</u><u> </u>
=> 3x + 3y -3y + y = 6 + 2
=> 4y = 8
=> y = 8/4
=> y = 2
<u>→</u><u> </u><u>Put</u><u> </u><u>y</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>in</u><u> </u><u>(</u><u>i</u><u>)</u><u> </u><u>,</u>
=> x + y = 2
=> x + 2 = 2
=> x = 2- 2
=> x = 0
<h3>
<u>★</u><u> </u><u>Hence</u><u>
the required solution is ( 0 , 2 ) .</u></h3>
Answer:
Step-by-step explanation:
4x + 2x = 90
6x = 90
x = 15
4(15)= 60 for <LMN
2(15)= 30