Answer:
dynamic imbalance may cause the steering wheel to pull both directions
Explanation:
Answer: A.
Explanation: Which of the following types of data helps a tech to determine the actual conditions under which a fault code is set? a test light. When it comes to troubleshooting an on-board diagnostic (OBD) code, the tech's best tools include all of these EXCEPT: ... original equipment manufacturer (OEM) diagnostic flow charts.
Answer:
V1 = 1.721 * V2
Explanation:
To start with, we assume that both lift forces are equal, such that
L2 = L1
1 is that of the level at 10000 m, and 2 is that of the level at sea level.
Next, we try and substitute the general formula for both forces such that
C(l).ρ1/2.V1².A = C(l).ρ2/2.V2².A
On further simplification, we have
ρ1.V1² = ρ2.V2², making V1 subject of formula, we have
V1 = √(ρ2/ρ1). V2²
Using the values of density for air at 10000 m and at sea level(source is US standard atmosphere), we have
V1 = √(1.225/0.4135) * V2
V1 = √2.9625 * V2
V1 = 1.721 * V2
Answer:
thats really hard how could you answerthis hhhhhhh
Answer:
938.7 milliseconds
Explanation:
Since the transmission rate is in bits, we will need to convert the packet size to Bits.
1 bytes = 8 bits
1 MiB = 2^20 bytes = 8 × 2^20 bits
5 MiB = 5 × 8 × 2^20 bits.
The formula for queueing delay of <em>n-th</em> packet is : (n - 1) × L/R
where L : packet size = 5 × 8 × 2^20 bits, n: packet number = 48 and R : transmission rate = 2.1 Gbps = 2.1 × 10^9 bits per second.
Therefore queueing delay for 48th packet = ( (48-1) ×5 × 8 × 2^20)/2.1 × 10^9
queueing delay for 48th packet = (47 ×40× 2^20)/2.1 × 10^9
queueing delay for 48th packet = 0.938725181 seconds
queueing delay for 48th packet = 938.725181 milliseconds = 938.7 milliseconds