The heat transferred to and the work produced by the steam during this process is 13781.618 kJ/kg
<h3>
How to calcultae the heat?</h3>
The Net Change in Enthalpy will be:
= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg
Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)
= 1/2 x ( 75 + 225) x (5 - 2)
W = 450 KJ
From the First Law of Thermodynamics, Q = U + W
So, Heat Transfer = Change in Internal Energy + Work Done
= 13331.618 + 450
Q = 13781.618 kJ/kg
Learn more about heat on:
brainly.com/question/13439286
#SP1
Answer:
B. The thickness of the heated region near the plate is increasing.
Explanation:
First we know that, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The fluid is often slower due to the effects of viscosity. Advection i.e the transfer of heat by the flow of liquid becomes less since the flow is slower, thereby the local heat transfer coefficient decreases.
From law of conduction, we observe that heat transfer rate will decrease based on a smaller rate of temperature, the thickness therefore increases while the local heat transfer coefficient decreases with distance.
Answer:
I do i do it everyday
Explanation:
Press windows and prt sc at the same time
1.Only suitable for dc
2.more expensive than moving iron type
3. Easily damaged
Answer:
The Current will decrease by a factor of 2
Explanation:
Given the conditions, it should be noted that the current in the circuit is determined by the LOAD. In other words, the amount of current generator will be producing depends upon the load connected to it.
Now, as the question says, the load is reduced to half its original value, we can write:


Since, P2 = P1/2,

Dividing equations (1) and (2), we get,
P1 / (P1/2) = I1/ I2

Hence, it is proved that the current in the transmission line will decrease by a factor of 2 when load is reduced to half.