Answer:
a)
, b)
,
,
, c)
,
,
, 
Explanation:
a) The total number of users that can be accomodated in the system is:


b) The length of the side of each cell is:


Minimum time for traversing a cell is:



The maximum time for traversing a cell is:


The approximate time is giving by the average of minimum and maximum times:


c) The total number of users that can be accomodated in the system is:


The length of each side of the cell is:


Minimum time for traversing a cell is:



The maximum time for traversing a cell is:


The approximate time is giving by the average of minimum and maximum times:


Explanation:
Ohm's law is used here. V = IR, and variations. The voltage across all elements is the same in this parallel circuit. (V1 =V2 =V3)
The total supply current is the sum of the currents in each of the branches. (It = I1 +I2 +I3)
Rt = (8 V)/(8 A) = 1 Ω . . . . supply voltage divided by supply current
I3 = 8A -3A -4A = 1 A . . . . supply current not flowing through other branches
R1 = (8 V)/(3 A) = 8/3 Ω
R2 = (8 V)/(4 A) = 2 Ω
R3 = (8 V)/(I3) = (8 V)/(1 A) = 8 Ω
V1 = V2 = V3 = 8 V
Answer:
The answer is "conditionally unstable"
Explanation:
The conditional volatility is really a condition of uncertainty, which reflects on whether increasing air is polluted or not. It determines the rate of ambient delay, which has been between humid and dry adiabatic rates. In general, the environment is in an unilaterally unhealthy region.
Classification dependent on ELR:
Larger than 10
m Around 10 and 6
m or less 6
m volatile implicitly unreliable Therefore ELR is implicitly unreliable 9
m, that's why it is "conditionally unstable".