Answer:
a) at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
b) daylight (d) = 0.50 μm
Incandescent ( i ) = 1 μm
Explanation:
To Calculate the band emission fractions we will apply the Wien's displacement Law
The ban emission fraction in spectral range λ1 to λ2 at a blackbody temperature T can be expressed as
F ( λ1 - λ2, T ) = F( 0 ----> λ2,T) - F( 0 ----> λ1,T )
<em>Values are gotten from the table named: blackbody radiati</em>on functions
<u>a) Calculate the band emission fractions for the visible region</u>
at T = 5800 k
band emission = 0.2261
at T = 2900 k
band emission = 0.0442
attached below is a detailed solution to the problem
<u>b)calculate wavelength corresponding to the maximum spectral intensity</u>
For daylight ( d ) = 2898 μm *k / 5800 k = 0.50 μm
For Incandescent ( i ) = 2898 μm *k / 2900 k = 1 μm
Answer: The exit temperature of the gas in deg C is .
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa,
We know that for an ideal gas the mass flow rate will be calculated as follows.
or, m =
=
= 10 kg/s
Now, according to the steady flow energy equation:
= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
=
Therefore, we can conclude that the exit temperature of the gas in deg C is .
Explanation:
Specific cutting energy:
It the ratio of power required to cut the material to metal removal rate of material.If we take the force required to cut the material is F and velocity of cutting tool is V then cutting power will be the product of force and the cutting tool velocity.
Power P = F x V
Lets take the metal removal rate =MRR
Then the specific energy will be
If we consider that metal removal rate and cutting tool velocity is constant then when we increases the cutting force then specific energy will also increase.
Answer:
3.03 INCHES
Explanation:
According to ASTM D198 ;
Modulus of rupture = ( M / I ) * y ----- ( 1 )
M ( bending moment ) = R * length of span / 2
= (120 * 10^3 ) * 48 / 2 = 288 * 10^4 Ib-in
I ( moment of inertia ) = bd^3 / 12
= ( 2 )*( d )^3 / 12 = 2d^3 / 12
b = 2 in , d = ?
length of span = 4 * 12 = 48 inches
R = P / 2 = 240 * 10^3 / 2 = 120 * 10^3 Ib
y ( centroid distance ) = d / 2 inches
back to equation ( 1 )
( M / I ) * y
940.3 ksi = ( 288 * 10^4 / 2d^3 / 12 ) * d / 2
= ( 288 * 10^4 * 12 ) / 2d^3 ) * d / 2
940300 = 34560000* d / 4d^3
4d^3 ( 940300 ) = 34560000 d ( divide both sides with d )
4d^2 = 34560000 / 940300
d^2 = 9.188 ∴ Value of d ≈ 3.03 in