Answer:
0.129 m
Explanation:
See attached picture for step by step explanation.
Answer:
A block and tackle is characterized by the use of a single continuous rope to transmit a tension force around one or more pulleys to lift or move a load. Its mechanical advantage is the number of parts of the rope that act on the load. The mechanical advantage of a tackle dictates how much easier it is to haul or lift the load.
Explanation:
Hope this helps- have a good day ^w
Answer:
The viscosities of the oils are 0.967 Pa.s and 1.933 Pa.s
Explanation:
Assuming the two oils are Newtonian fluids.
From Newton's law of viscosity for Newtonian fluids, we know that the shear stress is proportional to the velocity gradient with the viscosity serving as the constant of proportionality.
τ = μ (∂v/∂y)
There are oils above and below the plate, so we can write this expression for the both cases.
τ₁ = μ₁ (∂v/∂y)
τ₂ = μ₂ (∂v/∂y)
dv = 0.3 m/s
dy = (0.06/2) = 0.03 m (the plate is centered in a gap of width 0.06 m)
τ₁ = μ₁ (0.3/0.03) = 10μ₁
τ₂ = μ₂ (0.3/0.03) = 10μ₂
But the shear stress on the plate is given as 29 N per square meter.
τ = 29 N/m²
But this stress is a sum of stress due to both shear stress above and below the plate
τ = τ₁ + τ₂ = 10μ₁ + 10μ₂ = 29
But it is also given that one viscosity is twice the other
μ₁ = 2μ₂
10μ₁ + 10μ₂ = 29
10(2μ₂) + 10μ₂ = 29
30μ₂ = 29
μ₂ = (29/30) = 0.967 Pa.s
μ₁ = 2μ₂ = 2 × 0.967 = 1.933 Pa.s
Hope this Helps!!!
Answer:Taking as a basis of calculation 100 mol of gas leaving the conversion reactor, draw andcompletely label a flowchart of this process. Then calculate the moles of fresh methanol feed,formaldehyde product solution, recycled methanol, and absorber off-gas, the kg of steamgenerated in the waste-heat boiler, and the kg of cooling water fed to the heat exchangerbetween the waste-heat boiler and the absorber. Finally, calculate the heat (kJ) that must beremoved in the distillation column overhead condenser, assuming that methanol enters as asaturated vapor at 1 atm and leaves as a saturated liquid at the same pressure.
1
SEE ANSWER
Explanation: