Given:
Origin of the clock face (0,0)
label 12 point (0,5)
I am assuming that the radius of the clock is 5 units.
Label 6 should be placed on the point (0,-5). The point of label 12 should be reflected across the x-axis and labeled as 6 of the clock face.
I am sorry, I do not know how to delete this answer.
I was going to write something, though I do not know how to do a step by step explanation.
申し訳ありませんが、この回答の削除方法がわかりません。
ステップバイステップの説明の仕方がわからないのですが、何か書こうと思っていました。日本語が下手で申し訳ありませんでした。
Without the step by step explanation, the answer is 63.0317380373.
ステップバイステップの説明がなければ、答えは63.0317380373です。
Answer: inequality form x < 3 interval form: (
-∞, 3)
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
Answer:
First of all, before writing the y-intercept you need to make sure that the equation is in slope intercept form.
x + 3y = 14
3y = 14 - x
y = 14/3 -x/3
y= -x/3 + 14/3
14/3 is the y-intercept
Use the distributive property.
5(8 + 9) = 5 * 8 + 5 * 9