To solve this
problem, we will have to make use of the z statistic. The formula for the z
score is given as:
z = (x – u) / s
where,
x is the sample value = more than $10.00
u is the sample mean = $8.22
s is the standard deviation = $1.10
Substituting the values into the equation to solve for z:
<span>z = (10 – 8.22) /
1.10</span>
z = 1.78 / 1.10
z = 1.62
We then look for the p value using the standard
distribution tables at the specified z score value = 1.62. Since this is a
right tailed test, therefore the p value is:
p = 0.0526
or
p = 5.26%
<span>Therefore there is a 5.26% probability that a household
spent more than $10.00</span>
Slope = (change in y)/(change in x)
.. = (-14 -0)/(2 -0)
.. = -14/2
slope = -7
Answer:
<h2>
<em><u>Option</u></em><em><u> </u></em><em><u>B</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>D</u></em></h2>
Step-by-step explanation:
As,
![{64}^{ \frac{2}{3} } = {(\sqrt[3]{64})}^{2} = \sqrt[3]{ {64}^{2} }](https://tex.z-dn.net/?f=%20%7B64%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%28%5Csqrt%5B3%5D%7B64%7D%29%7D%5E%7B2%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B64%7D%5E%7B2%7D%20%7D%20%20)
Answer: it should be 565.5
Step-by-step explanation: