The reaction N2O4 (g) <--> 2NO2 (g) is endothermic, meaning that it consumes heat to move towards formation of the products.
According to Le Chatelier's Principle, therefore, if heat is added, more product (NO2) will be produced, and equilibrium would shift towards the right side. This is choice 3.
Answer:
10.10
Explanation:
Step 1: Write the basic dissociation reaction for pyridine
C₅H₅N(aq) + H₂O(l) ⇌ C₅H₅NH⁺(aq) + OH⁻(aq) Kb = 1.9 × 10⁻⁹
Step 2: Calculate [OH⁻]
For a weak base, we will use the following expression.
[OH⁻] = √(Cb × Kb) = √(9.2 × 1.9 × 10⁻⁹) = 1.3 × 10⁻⁴ M
Step 3: Calculate pOH
We will use the definition of pOH.
pOH = -log [OH⁻] = -log 1.3 × 10⁻⁴ = 3.9
Step 4: Calculate pH
We will use the following expression.
pH = 14 - pOH = 14 - 3.9 = 10.10
Answer:
Ion-ion force between Na+ and Cl− ions
London dispersion force between two hexane molecules
Explanation:
"Ion-dipole force between Na+ ions and a hexane molecule
" does not exist since hexane has only non-polar bonds and therefore no dipole.
"Ion-ion force between Na+ and Cl− ions
" exists since both are ions.
"Dipole-dipole force between two hexane molecules
" does not exist since hexane molecules do not have a dipole.
"Hydrogen bonding between Na+ ions and a hexane molecule
" does not exist since the hydrogen in the hydrogen bond must be bonded directly to an electronegative atom, which hexane does not have since it is a hydrocarbon.
"London dispersion force between two hexane molecules" exist since hexane is a molecular compound.
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Answer:
mass HF = 150.05 g
Explanation:
- SiO2(s) + 4HF(g) → SiF4(g) + 2H2O(l)
⇒ Q = (ΔH°rxn * mHF) / (mol HF * MwHF )
∴ MwHF = 20.0063 g/mol
∴ mol HF = 4 mol
∴ ΔH°rxn = - 184 KJ
∴ Q = 345 KJ
mass HF ( mHF ):
⇒ mHF = ( Q * mol HF * MwHF ) / ΔH°rxn
⇒ mHF = ( 345 KJ * 4mol HF * 20.0063 g/mol ) / 184 KJ
⇒ mHF = 150.05 g HF