<span>In a popular classroom demonstration, solid sodium is added to liquid water and reacts to produce hydrogen gas and aqueous sodium hydroxide. Balanced chemical equation for this reaction is given below.
Na-sodium , H2o- water, H-hydrogen gas and NaOH- aqueous sodium hydroxide.
Two atoms of Na react with two atoms of water and this reaction will give us H (hydrogen gas) and two atoms of NaOH (aqueous sodium hydroxide).
2Na + 2 H2o = H2 +2NaOH.</span>
The best way to accurately determine the pair with the highest electronegativity difference is by using their corresponding electronegativity values. For the each of the choices, the difference is:
A. H-S = 2.5 - 2.1 = 0.4
B. H-Cl = 3 - 2.1 = 0.9
C. N-H = 3 - 2.1 = 0.9
D. O-H = 3.5 - 2.1 = 1.4
E. C-H = 2.5 - 2.1 = 0.4
As show, D. has the highest difference. Without looking at their values, you can also determine the pair with the highest difference by taking note of the trend of electronegativity on the periodic table. Electronegativity increases as you go right a group and up a period. This makes oxygen the most electronegative element among the other elements paired with hydrogen.
Answer:
Yes Concurred,but where is the question
The correct answers would be A, and D
Answer:
(c) The retention time would be higher (d) The retention time would be lower.
Explanation:
For the polar solutes which were separated using the hydrophilic interaction chromatography (HILIC) with a strongly polar bonded phase, the retention time would be higher if eluent were changed from 80 vol% to 90 vol% acetonitrile in water.
However, for the polar solutes which were separated using the normal-phase chromatography on bare silica with methyl t=butyl ether and 2-propanol solvent, the retention time would be lower if the eluent were changed from 40 vol% to 60 vol% 2-propanol.