Put it in standard form, z=a+bi where the point is (a,b)
z=-5i-14
The point would be (-5,-14)
That would be located in the negative x and y coordinates, so it would be in the third or III quadrant.
Hope this helps.
Answer:
Infinite number of solutions
Step-by-step explanation:

For any value of x, both equations are equal to each other because both sides are identical
2)
A: 5
B: 9a & a (from a/6)
C: -5 & ÷4
D: -5 & 9a
I haven't done algebra in a year, so don't think my answers are perfect!
definitions:
term: something separated by a sign/symbol (÷, ×, - +) (a/6 are two separate terms, ÷)
constant terms: variables that can be solved.
unlike terms: terms that don't "go" together, you can't subtract 5 from 9a because there's a variable in the way (eyy that rhymes)
like terms: terms that you can add/subtract/multiply/divide to another term
(another answer to c is 9a & a)
Answer:
14
Step-by-step explanation:

Answer:
If thrown up with the same speed, the ball will go highest in Mars, and also it would take the ball longest to reach the maximum and as well to return to the ground.
Step-by-step explanation:
Keep in mind that the gravity on Mars; surface is less (about just 38%) of the acceleration of gravity on Earth's surface. Then when we use the kinematic formulas:

the acceleration (which by the way is a negative number since acts opposite the initial velocity and displacement when we throw an object up on either planet.
Therefore, throwing the ball straight up makes the time for when the object stops going up and starts coming down (at the maximum height the object gets) the following:

When we use this to replace the 't" in the displacement formula, we et:

This tells us that the smaller the value of "g", the highest the ball will go (g is in the denominator so a small value makes the quotient larger)
And we can also answer the question about time, since given the same initial velocity
, the smaller the value of "g", the larger the value for the time to reach the maximum, and similarly to reach the ground when coming back down, since the acceleration is smaller (will take longer in Mars to cover the same distance)