Explanation:
The given data is as follows.
Length of beam, (L) = 5.50 m
Weight of the beam, (
) = 332 N
Weight of the Suki, (
) = 505 N
After crossing the left support of the beam by the suki then at some overhang distance the beam starts o tip. And, this is the maximum distance we need to calculate. Therefore, at the left support we will set up the moment and equate it to zero.

= 0
x = 
= 
= 0.986 m
Hence, the suki can come (2 - 0.986) m = 1.014 from the end before the beam begins to tip.
Thus, we can conclude that suki can come 1.014 m close to the end before the beam begins to tip.
Answer:
The workdone is 
Explanation:
From the question we are told that
The height of the cylinder is 
The face Area is 
The density of the cylinder is 
Where
is the density of freshwater which has a constant value

Now
Let the final height of the device under the water be 
Let the initial volume underwater be 
Let the initial height under water be 
Let the final volume under water be 
According to the rule of floatation
The weight of the cylinder = Upward thrust
This is mathematically represented as


So 
=> 
Now the work done is mathematically represented as

![= \rho_w g A [\frac{h^2}{2} ] \left | h_f} \atop {h}} \right.](https://tex.z-dn.net/?f=%3D%20%20%20%5Crho_w%20g%20A%20%5B%5Cfrac%7Bh%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20h_f%7D%20%5Catop%20%7Bh%7D%7D%20%5Cright.)
![= \frac{g A \rho}{2} [h^2 - h_f^2]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7Bg%20A%20%5Crho%7D%7B2%7D%20%20%5Bh%5E2%20-%20h_f%5E2%5D)
![= \frac{g A \rho}{2} (h^2) [1 - \frac{h_f^2}{h^2} ]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7Bg%20A%20%5Crho%7D%7B2%7D%20%28h%5E2%29%20%20%5B1%20%20-%20%5Cfrac%7Bh_f%5E2%7D%7Bh%5E2%7D%20%5D)
Substituting values

The air flows slower in a bigger space. The air in a small space hit each other heating up, and move faster and faster. is that what your asking?
Answer:
The value is 
Explanation:
From the question we are told that
The potential of the proton is 
Generally the momentum of the particle is mathematically represented as

Here e is the charge on the proton with value

m is the mass of the proton with value 
So

=> 
So the de-Broglie wavelength isis mathematically represented as

Here h is the Planck's constant with value

=> 
=>